Section 1: Life Systems

Basic Science Concepts

Unit 1
Biomes p. 8
Unit 2
Habitats and Communities
Unit 3
Changes to Habitats
p. 16

Unit 4
Our Interaction with Habitats
Unit 5
Food Chains
Unit 6
What Animals Eat

STEM
 Experiments

Experiment 1:
A Bird's Home p. 32

Experiment 2:
Amazing Builders p. 36

Experiment 3:
Thank You, Plants! p. 40

Section 2: Structures and Mechanisms

Basic Science Concepts

STEM
 Experiments

Experiment 1:

Powerful Pulleys

Experiment 2:
Teeth on Gears

Experiment 3:
Twist and Turn!
p. 77

Basic Science Concepts

Unit 1
Light around Us p. 82
Unit 2
Light: Reflection and Refraction

Unit 3

Light: Transparency

p. 90

Unit 4
What Is Sound?
Unit 5
What Happens to Sound
p. 98

Unit 6
How We Use Light and
Sound

STEM
 Experiments

Experiment 1:
Light Reflection
p. 106

Experiment 2:
Bending Light
p. 110

Experiment 3:
Sound Travels
p. 114

Basic Science Concepts

Unit 1

Rocks and Minerals p. 119
Unit 2
Minerals p. 123
Unit 3
Rocks
p. 127

Unit 4
The Rock Cycle
Unit 5
How We Use Rocks
p. 135

Unit 6
More about How We Use Rocks

Answers

\rightarrow 는
 Experiments

Experiment 1:
Volcanoes

Experiment 2:
Growing Minerals

Experiment 3:
Fossilized Rocks
P. 151

Light: Reflection and Refraction

We see because of light. In this unit, you will learn about two special properties of light, reflection and refraction, and recognize

After completing this unit, you will

- know what reflection and refraction of light are.
- understand why we see a rainbow.
- understand how we see colors.

vocabulary

reflection: the occurrence of light bouncing off an object refraction: the occurrence of light bending or changing its angle as it passes from one material to another
absorb: to take in (light)

mirror

Eticnsjo

Pools, lakes, and rivers often appear less deep than they really are because water acts just like a magnifying lens, bending light to make it seem like the bottom of these bodies of water are nearer to us than they truly are. Next time you go swimming, try picking up an object from under the water. You might find that it is deeper than you think.

A. Fill in the blanks with "reflection" or "refraction." Then draw lines to match the pictures with the correct descriptions.

Properties of Light

. When light hits an object and bounces off, it creates a \qquad .
-
 water, it may bend and change direction. This is called \qquad .
B. Fill in the blanks with the given words. Then color the rainbow.
red white direction refraction yellow green
blue indigo violet raindrop orange

Since sunlight appears to have no colors, we call it 1. \qquad light, but it is really made up of all the colors of the rainbow: 2. \qquad 3. 4.
5. 6 \qquad , 7. and
8. \qquad . When white light meets a 9 . , it
changes 10. \qquad . This change of direction is called 11. . When the colors in the light are refracted and separated, a beautiful rainbow is formed.

An Example of Refraction

C. Fill in the blanks to complete the descriptions. Then answer the question.

How Do We See Colors?

A When sunlight shines on a white surface, we see white/black because the surface \qquad all the colors.

B When sunlight shines on a black surface, we see _ because all the colors have been white/black
taken in or $\longdiv { \text { reflected/absorbed } }$.
(C) When sunlight shines on a yellow surface, we see __yellow/red because all the colors except yellow have been \qquad by the surface.
reflected/absorbed

What makes a green frog green?

LIGHT REFLECTION

 understanding what happens when light hits mirrorsHave you ever wondered why you can see your reflection in a mirror? Light travels in a straight line and can bounce off an object like a ball bouncing off a wall. The object reflects the light into our eyes; therefore, we can see the object. Mirrors and other shiny surfaces are special because light hitting these surfaces at an angle reflects off at the exact same angle. This is why we can see our reflection clearly in a mirror.

What you need:

Difficulty: 00000
 Time needed: 30 minutes

In this experiment, you will explore the concept of light reflection.

What to do:

(1) Cut two cards that are 8 in by 6 in (about 20 cm by 15 cm) out of the cardboard.
(2) Wrap one card with a piece of smooth and flat foil with the shiny side facing out and the other card with a piece of crumpled foil.
(3) Go into a dark room with the cards, the apple, and the flashlight.

(4) Put the apple and the flashlight $40 \mathrm{in} / 1 \mathrm{~m}$ apart and $40 \mathrm{in} / 1 \mathrm{~m}$ away from a wall.

(5) Place the card wrapped with the crumpled foil against the wall and shine the flashlight onto it.
(6) Move and adjust the angle of the card to see whether you can see the apple itself being lit up and the reflection of the apple on the card.
(7) Repeat Steps 5 and 6 using the card wrapped with the smooth and flat foil. Can you see the apple this time?

In this experiment, when the flashlight shone on the card wrapped with the crumpled foil, the rough surface caused the light to scatter in different directions. This made it difficult to see a clear reflection of the apple on the foil.

On the other hand, when the flashlight shone on the card wrapped with the smooth foil,
 the light hit the card and was reflected off at the same angle. The smooth and flat surface of the foil allowed the light to bounce off in the same direction. Therefore, the image of the apple appeared clearly on the card.

This experiment showed that the surface of an object can affect how light behaves when it hits the surface. Rough surfaces, like the crumpled foil, scatter the light in different directions, making it harder to see clear reflections. Whereas smooth surfaces, like the smooth foil, reflect the light more uniformly, allowing us to see clear reflections.

Knowing how light interacts with different surfaces helps us understand why some objects appear shiny, while others look dull or rough.

STEMANUURy

- What are some other materials that show good reflections of objects?
- Optical fibers are thin fibers that use light reflection to transmit light and information over a long distance. Do some research and find videos online with the permission from an adult to see how light bounces off the fiber's walls.
- If you are asked to build your own bedroom, will you use fairly smooth or textured surface for the floor and walls? Why?
- Design and build your own small-scale mirror maze. Adjust the angle of position of each mirror. Shine a flashlight on it. Observe the reflection and the light path.

Look into a mirror. How is symmetry related to the reflected image in the mirror?

What Is "ЭכИAJU8MA"? •

Have you ever wondered why the word in the front of an ambulance is spelled backward? This is because it is meant to be read in the rearview mirror of cars in front of the ambulance. Since it is seen through a mirror, "ヨכИА」UЯМА" will be read as "AMBULANCE" for drivers.

